International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 8, Decemer 2017,

ISSN: 2320-0294 Impact Factor: 6.238

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

VAGUE IDEAL OF A □-NEAR-RING

L. Bhaskar* T. Nagaiah**

Abstract

The main motivation of this paper to introduce the notion of vagu sub Γ -near-ring and vague ideal of Γ -near-ring. Based on these concepts, we analyzed some properties and results for development of theorems illustrated with examples.

Keywords:

Vague sub Γ -near-ring ; Vague ideal of Γ -near-ring.

Copyright © 2017 International Journals of Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

L.Bhaskar,
Department of Mathematics,
Kakatiya University,
Warangal, India,

1. Introduction

In 1964, Nobusawa [6] has initiated the notion of Γ -ring, which is generalization of ring. In [5, 7] was studied near-ring and gamma near-ring. The concepts of fuzzy sets and fuzzy subsets were firstly introduced by L.A.Zadeh [9] in 1965. To increase the study of vague sets, many authors have considered several extension works in fuzzy sets. W.L Gau et al [2] were the first to study the notion of vague sets. Also pointed out two important membership functions. First one is that, a true membership function and second one is false membership function. R.Biswas [1] initiated the notion of vague groups etc. In [8] S.D. Kim and H.S. Kim have studied the notion of fuzzy sub nearring and fuzzy ideal of near-ring and P.NarsimhaSwamy [4] studied the sum of fuzzy ideal of nearring. Y.B.Jun[3] had introduced the concepts of fuzzy ideal of gamma near-ring. In this direction, we proposed the new concepts vague sub Γ -near-ring and vague ideal of Γ -near-ring. And also, we have studied some properties and their results discussed.

2. Preliminaries

Throughout this paper N stands for Γ -near-ring unless or otherwise mentioned.

^{*} Doctorate Program, Linguistics Program Studies, Udayana University Denpasar, Bali-Indonesia (9 pt)

^{**} STIMIK STIKOM-Bali, Renon, Depasar, Bali-Indonesia

Definition1.[2] A vague set A in the universe of discourse U is a pair (t_A, f_A) , where $t_A: U \to [0,1], \ f_A: U \to [0,1]$ are mappings such that $t_A(u) + f_A(u) \le 1$ for all $u \in U$. The

functions t_A and f_A are called true membership function and false membership function in [0,1] respectively.

Definition2.[2] The interval $[t_A(u), 1-f_A(u)]$ is called the vague value of u in A and it is denoted by $V_A(u)$, i.e. $V_A(u) = [t_A(u), 1-f_A(u)]$ where A is a vague set and $u \in U$ is the universal of discourse or classical objects.

Notation1. [2]Let [0, 1] denotes the family of all closed subinterval of [0, 1]. If $I_1 = [a_1, b_1]$ and $I_2 = [a_2, b_2]$ be two elements of I[0, 1], we call $I_1 \ge I_2$ if $a_1 \ge a_2$ and $b_1 \ge b_2$ with the order in I[0, 1] is a lattice with operations min or inf and max or sup given by

$$\min\{I_1, I_2\} = [\min(a_1, a_2), \min(b_1, b_2)]$$

$$\min\{I_1, I_2\} = [\max(a_1, a_2), \max(b_1, b_2)]$$

Definition4. [8] Let R and S be near-ring. A map $\phi: R \to S$ is called near-ring homomorphism if ϕ (x + y) = ϕ (x) + ϕ (y) and ϕ (x) = ϕ (x) ϕ (y) for all x, $y \in R$.

3. Vague ideal of r-near-ring

Definition5. Let A be a vague set of a Γ -near-ring N. Then A is called vague sub Γ -near-ring of N, if it satisfies the following conditions:

(i)
$$V_A(x+y) \ge \min(V_A(x), V_A(Y))$$
,

(ii)
$$V_{\Delta}(-x) = V_{\Delta}(x)$$
,

(iii) $V_A(x\alpha\gamma) \ge \min(V_A(x), V_A(y))$ for every $x, y \in N$ and -x is the additive inverse of x.

Definition6. Let A be a vague set of a Γ -near-ring N. Then A is said to be a vague ideal of N, if it satisfies the following conditions:

(i)
$$V_A(x+y) \ge \min(V_A(x), V_A(y))$$

(ii) $V_A(-x) = V_A(x)$, -x is the additive inverse of x

(iii)
$$V_A(z+x-z) \ge V_A(x)$$

(iv)
$$V_A(x\alpha\gamma) \ge V_A(x)$$
,

 $(\textit{v}) V_{\scriptscriptstyle A}(x\alpha(y+i) - x\alpha\gamma) \geq V_{\scriptscriptstyle A}(i) \quad \text{(Equivalently } V_{\scriptscriptstyle A}(x\alpha z - x\alpha\gamma) \geq V_{\scriptscriptstyle A}(z-y)) \ \, \text{for every x,y,z,i} \in \textit{N} \\ \text{and } \alpha \in \Gamma \, . \\$

A is a vague right ideal of N if it satisfies (i), (ii), (iii) and (iv).

A is a vague left ideal of N if it satisfies (i), (ii), (iii) and (v).

Note: (a) In the above definition the conditions (i) and (ii) together can be written as $V_A(x-y) \ge \min(V_A(x),V_A(y))$.

- (b) If A is a vague ideal of N, then $V_A(x+y) = V_A(y+x)$ for every x, $y \in \mathbb{N}$.
- (c) If A is a vague ideal of N, then $V_A(0) \ge V_A(x)$ for every $x \in \mathbb{N}$.

Example 1. Let $N_1 = \{0,1,2\}_{\bigoplus 3}$ and $\Gamma = \{\alpha,\beta\}$ define a mapping on N_1 as $N_1 \times \Gamma \times N_1 \rightarrow N_1$ by the following tables

$\oplus 3$	0	1	2	
0	0	1	2	
1	1	2	0	
2	2	0	1	

		1		β	0	1	2	
0	0	1	2	0	0	0		
1	1	2	0	0 1 2	0	1	2	
2	2	1 2 0	1	2	0	1	2	

It is clear that x, y, z, $i \in N_1$ and α , $\theta \in \Gamma$. Then N_1 is a Γ – near-ring.

A vague set $A = (t_A, f_A)$ of N_1 defined as $t_A : N_1 \rightarrow [0,1]$ and $f_A : N_1 \rightarrow [0,1]$ by

$$t_A(x) = \begin{cases} 0.5 & \text{if } x = 0, \\ 0.5 & \text{if } x = 1, 2. \end{cases}$$
$$f_A(x) = \begin{cases} 0.5 & \text{if } x = 0, \\ 0.5 & \text{if } x = 1, 2. \end{cases}$$

Then A is a vague ideal of N_1 for every $x, y \in N_1$

Remark1. Let A be a vague ideal of N, then the condition $V_A(x\alpha z - x\alpha y) \ge V_A(z - y)$ is equivalent to the condition $V_A(x\alpha (y + i) - x\alpha y) \ge V_A(i)$.

Proof: Suppose that $V_A(x\alpha z - x\alpha y) \ge V_A(z - y)$

Then
$$V_A(x\alpha(y+i)-x\alpha y) \ge V_A(y+i-y) = V_A(i)$$
.

Conversely, suppose that $V_A(x\alpha(y+i)-x\alpha y) \ge V_A(i)$

Then
$$x\alpha z - x\alpha y = x\alpha(y-y+z) - x\alpha y = x\alpha(y+i) - x\alpha y$$
 where $i = -y+z$.
$$Thus V_A(x\alpha z - x\alpha y) = V_A(x\alpha(y+i) - x\alpha y)$$

$$\geq V_A(i)$$

$$= V_A(-y+z)$$

$$=V_{\Lambda}(z-y).$$

Lemma1.Let N be a Γ -near-ring and A be a vague set of N satisfies the condition $V_A(x-y) \geq \min(V_A(x), V_A(y) \text{ then (i)} \ V_A(0)) \geq V_A(x) \ (ii) V_A(-x) \geq V_A(x)$. Proof.

$$\begin{split} (i) \ V_A(0) &= V_A(x-x) \\ &\geq \min(V_A(x), \, V_A(-x) \\ &\geq \min(V_A(x), \, V_A(x)) \\ &= V_A(x) \ for \ every \ x \in N \\ (ii) \ V_A(-x) &= V_A(0-x) \\ &\geq \min(V_A(0), \, V_A(-x) \\ &\geq \min(V_A(x), \, V_A(x)) \\ &= V_A(x) \end{split}$$

For all $x \in N$

Proposition1. Let A be a vague ideal of Γ -near-ring N. If $V_A(x-y)=V_A(0)$ then $V_A(x)=V_A(y)$ Proof.

Suppose that $V_A(x-y) = V_A(0)$ for all $x, y \in N$

then
$$V_A(x) = V_A(x - y + y)$$

 $\geq \min(V_A(x - y), V_A(y))$
 $\geq \min(V_A(0), V_A((y)))$
 $= V_A(y)$

Similarly, using $V_A(y-x) = V_A(x-y) = V_A(o)$, we have $V_A(y) \ge V_A(x)$.

Definition7.Let A be a vague set of N, and g is a function defined on N, then the vague set h in g(N) define by $V_h(y) = \sup_{x \in \sigma^{-1}(y)} V_A(x)$ for every $y \in g(N)$ is called the image of A under g.

Similarly, if B is a vague set in g (N), then the vague set A=hog in N (i.e, the vague set defined as $V_A(x) = V_h(g(x))$ (for every x in N) is called the pre-image of h under g.

Theorem1. A Γ -near-ring homomorphic pre-image of a vague left {right} ideal is a vague left {right}.

*Proof.*Let $\psi: N \to S$ be a Γ -near-ring homomorphism, and h be a vague left ideal of S and A be the pre-image of h under ψ and α in N.

$$then V_A(x-y) = V_h(\psi(x-y))$$

$$= V_h(\psi(x) - \psi(y))$$

$$\geq \min(V_h(\psi(x), V_h(\psi(y)))$$

$$= \min(V_A(x), V_A(y))$$

and

$$V_{A}(x\alpha y) = V_{h}(\psi(x\alpha y))$$

$$=V_{h}(\psi(x)\alpha\psi(y))$$

$$=V_{A}(y)$$

and

$$\begin{split} V_A(y+x-y) &= V_h(\psi(y+x-y)) \\ &= V_h(\psi(y) + \psi(x) - \psi(y)) \\ &\geq V_h(\psi(x) \\ &= V_A(x)) \ for \ every \ x, y \in N \end{split}$$

Now suppose that h is a vague right ideal of S, then

$$\begin{split} V_{A}((x+i)\alpha y - x\alpha y) &= V_{h}(\psi(x+i)\alpha y + x\alpha y) \\ &= V_{h}\left((\psi(x) + \psi(i)\alpha\psi(y) + \psi(x)\alpha\psi(y)\right) \\ &\geq V_{h}(\psi(i)) \\ &= V_{A}(x) \ \ for \ every \ x, \ y, i \in N. \end{split}$$

Definition: We say that a vague set A in N has the sup property if, for any subset T of N, $\exists t_0 \in T$ such that

$$V_A(t_0) = \sup_{t \in T} V_A(t)$$

Theorem2. A Γ -near-ring homomorphic Image of a vague left(right) ideal having the sup property is a vague left{right} ideal.

Proof. Let $\psi:N\to S$ be a Γ -near-ring homomorphism, and A be a vague left ideal of N with the sup property and h be the image of A under ψ . Given $\psi(x),\psi(y)\in\psi(N)$ and Let $x_0\in\psi^{-1}(\psi(x)),y_0\in\psi^{-1}(\psi(y))$ be such that $V_A(x_0)=\sup_{t\in\psi^{-1}(\psi(x))}V_A(t),$

$$\begin{split} V_A(y_0) &= \sup_{t \in \psi^{-1}(\psi(y))} V_A(t) \text{ respectively. Then} \\ V_h(\psi(x) - \psi(y)) &= \sup_{t \in \psi^{-1}(\psi(x) - \psi(y))} V_A(t) \\ &\geq V_A(x_0 - y_0) \\ &\geq \min(V_A(x_0), V_A(y_0)) \\ &= \min\left(\sup_{t \in \psi^{-1}(\psi(x))} V_A(t), \sup_{t \in \psi^{-1}(\psi(y))} V_A(t)\right) \\ &= \min(V_h(\psi(x)), V_h(\psi(y)) \quad \text{and} \\ V_h(\psi(x)\alpha\psi(y) &= \sup_{t \in \psi^{-1}(\psi(x)\alpha\psi(y))} V_A(t) \\ &\geq V_A(x_0\alpha y_0) \\ &\geq V_A(y_0) \\ &= \sup_{t \in \psi^{-1}(\psi(y))} V_A(t) \\ &= V_h(\psi(y)) \\ V_h(\psi(y + x - y) &= V_h(\psi(y) + \psi(x) - \psi(y)) \\ &= \sup_{t \in \psi^{-1}(\psi(y) + \psi(x) - \psi(y))} V_A(t) \\ &\geq V_A(y_0 + x_0 - y_0) \\ &\geq V_A(x_0) \\ &= \sup_{t \in \psi^{-1}(\psi(x))} V_A(t) \\ &= V_h(\psi(x)). \end{split}$$

this shows that A is a vague left ideal of $\psi(N)$. Next assume that A is a vague right ideal of N. Given $\psi(i) \in \psi(N)$, $let i_0 \in \psi^{-1}(\psi(i))$

$$\begin{split} V_A(i_0) &= \sup_{t \in \psi^{-1}(\psi(i))} V_A(t) \ then \\ V_h(\psi(x+i)\alpha y - x\alpha y)) &= V_h(\psi(x) + \psi(i))\alpha \psi(y) - \psi(x)\alpha \psi(y)) \\ &\geq \sup_{t \in \psi^{-1}(\psi(x) + \psi(i))\alpha \psi(y) - \psi(x)\alpha \psi(y))} V_A(t) \\ &\geq V_A((x_0 + i_0)\alpha y_0 - x_0\alpha y_0 \\ &\geq V_A(i_0) \\ &= \sup_{t \in \psi^{-1}(\psi(x))} V_A(t) \\ &= V_h(\psi(i)). \end{split}$$

This shows that h is a vague right ideal of ψ (N).

Acknowledgement: The authors wish to thank the anonymous revieweras for their comments and valuable suggestions.

References

- [1] R. Biswas, "vague group, " International Journal of Computational Cognition, 4, 2(2000).
- [2] W.L Gau and D.J Buehrer, "vague sets", IEEE Transaction on Systems, Man and Cybernetics, pp.610-614, 23(1993).
- [3] Y.B.Jun, M.Sapanci and M.A.Ozturk, "Fuzzy ideal in gamma near-rings", Tr. J. of Mathematics, pp.449-459, 22(1998).
- [4] P. Narsimha Swamy, "A note on fuzzy ideals of a near-ring", Int. J. of Math. Sci. and Eng. Appl. Pp.423-435, 4(4)(2010).
- [5] T. Nagaiah "Contribution to near-ring theory and fuzzy ideals in near-rings and semigroups" Doctoral thesis, Kakatiya University, (2012).
- [6] Nobusawa, "On generalization of the ring theory", Osaka Journal of Mathematics, pp. 81-89, 1(1964).
- [7] Bh. Satyanarayana, "A note on Γ -near-rings", Indian journal of Mathematics, pp. 427-433, 41(1999).
- [8] S.D. Kim and H.S. Kim, "On fuzzy ideal of naer-rings", Bull. Korean Math, Soc., pp.133-139, 8(1965).
- [9] L.A.Zadeh, "Fuzzy set", Information and Control., pp.338-353, 8(1998).